Mapping and Monitoring of Vegetation using Airborne Laser Scanning

نویسنده

  • Mattias Nyström
چکیده

In this thesis, the utility of airborne laser scanning (ALS) for monitoring vegetation of relevance for the environmental sector was investigated. The vegetation characteristics studied include measurements of biomass, biomass change and vegetation classification in the forest-tundra ecotone; afforestation of grasslands; and detection of windthrown trees. Prediction of tree biomass for mountain birch (Betula pubescens ssp. czerepanovii) using sparse (1.4 points/m 2 ) and dense (6.1 points/m 2 ) ALS data was compared for a site at the forest-tundra ecotone near Abisko in northern Sweden (Lat. 68° N, Long. 19° E). The predictions using the sparse ALS data provided almost as good results (RMSE 21.2%) as the results from the dense ALS data (18.7%) despite the large difference in point densities. A new algorithm was developed to compensate for uneven distribution of the laser points without decimating the data; use of this algorithm reduced the RMSE for biomass prediction from 19.9% to 18.7% for the dense ALS data. Additional information about vegetation height and density from ALS data improved a satellite data classification of alpine vegetation, in particular for the willow and mountain birch classes. Histogram matching was shown to be effective for relative calibration of metrics from two ALS acquisitions collected over the same area using different scanners and flight parameters. Thus the difference between histogrammatched ALS metrics from different data acquisitions can be used to locate areas with unusual development of the vegetation. The height of small trees (0.3–2.6 m tall) in former pasture land near the Remningstorp test site in southern Sweden (Lat. 58° N, Long. 13° E) could be measured with high precision (standard deviation 0.3 m) using high point density ALS data (54 points/m 2 ). When classifying trees taller than 1 m into the two classes of changed and unchanged, the overall classification accuracy was 88%. A new method to automatically detect windthrown trees in forested areas was developed and evaluated at the Remningstorp test site. The overall detection rate was 38% on tree-level, but when aggregating to 40 m square grid cells, at least one windthrown tree was detected in 77% of the cells that according to field data contained windthrown trees. In summary, this thesis has shown the high potential for ALS to be a future tool to map and monitor vegetation for several applications of interest for the environmental sector.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Mapping of Hydrodynamic Vegetation Density of Floodplain Forests Using Airborne Laser Scanning

The determination of hydrodynamic vegetation density of floodplain forests in the Netherlands is currently based on manually delineated vegetation types and a lookup table to convert these into vegetation density. In this paper a method is presented to extract vegetation density from high-density airborne laser scanner data. Field reference data were collected on 45 plots in three different flo...

متن کامل

Evaluation of Geoscience Laser Altimeter System (glas) Waveforms for Vegetated Landscapes Using Airborne Laser Altimeter Scanning Data

The Geoscience Laser Altimeter System aboard NASA’s Ice, Cloud and land Elevation Satellite will record the height distribution of laser energy reflected from surfaces within 70 m diameter footprints. For land surfaces, post-processing of this waveform data will be used to estimate the within-footprint mean elevation and surface relief due to ground slope and roughness, vegetation cover, buildi...

متن کامل

Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types

There is increasing demand for reliable, high-resolution vegetation maps covering large areas. Airborne laser scanning data is available for large areas with high resolution and supports automatic processing, therefore, it is well suited for habitat mapping. Lowland hay meadows are widespread habitat types in European grasslands, and also have one of the highest species richness. The objective ...

متن کامل

Change Detection for Updating Medium Scale Maps Using Laser Altimetry

To increase the update rates of topographical databases, research is performed to automatically detect changes using airborne laser scanning data. After the determination of the bare-Earth points, the remaining points have been classified as either points on buildings or points on vegetation. Additional usage was made of registered colour imagery taken during the laser scanning survey. The resu...

متن کامل

Extracting Structural Characteristics of Dormant Herbaceous Floodplain Vegetation from Airborne Laser Scanner Data

To map spatial patterns of floodplain vegetation structure for hydrodynamic modelling, airborne laser scanning is a promising tool. In a test for the lower Rhine floodplain, vegetation height and density of herbaceous vegetation were measured in the field at 42 georeferenced plots of 200 m each. Simultaneously, three airborne laser scanning (ALS) surveys were carried out in the same areas resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014